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Ordinary Least Square  
• The OLS estimates have relatively low bias and low 

variability especially when the relationship between 
the response and predictors is linear and n >> p.

• If n is not much larger than p, then the OLS fit can 
have high variance and may result in over fitting and 
poor estimates on unseen observations.

• If p > n, then the variability of the OLS fit increases 
dramatically, and the variance of these estimates in 
infinite.
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Model Accuracy 
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• Carefully selected features can 
improve model accuracy but 
adding too many can lead to 
overfitting.

• Overfitted models describe random 
error or noise instead of any 
underlying relationship.

• They generally have poor predictive 
performance on test data.

§ For instance, we can use a 15-degree polynomial function to fit 
the following data so that the fitted curve goes nicely through the 
data points.

§ However, a brand new dataset collected from the same 
population may not fit this particular curve well at all.



Feature Selection 
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• Subset Selection
• Identify a subset of the p predictors that we believe to be related to the 

response; then, fit a model using OLS on the reduced set.
• Methods: best subset selection, stepwise selection

• Shrinkage (Regularization)
• Involves shrinking the estimated coefficients toward zero relative to the 

OLS estimates; has the effect of reducing variance and performs 
variable selection.

• Methods: ridge regression, lasso

• Dimension Reduction
• Involves projecting the p predictors into a M-dimensional subspace, 

where M < p, and fit the linear regression model using the M projections 
as predictors.

• Methods: principal components regression, partial least squares



Subset Selection: Shrinkage 
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• The subset selection methods use OLS to fit a linear model 
that contains a subset of the predictors.
• As an alternative, we can fit a model containing all p 

predictors using a technique that constrains or regularizes 
the coefficient estimates (i.e. shrinks the coefficient 
estimates towards zero).
• It may not be immediately obvious why such a constraint 

should improve the fit, but it turns out that shrinking the 
coefficient estimates can significantly reduce their 
variance.
• Regularization is our first weapon to combat overfitting.



Ridge Regression 
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• Recall that the OLS fitting procedure estimates the beta 
coefficients using the values that minimize:

• Ridge regression is similar to OLS, except that the coefficients are 
estimated by minimizing a slightly different quantity:

where λ ≥ 0 is a tuning parameter, to be determined separately.



Ridge Regression 
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• Note that λ ≥ 0 is a complexity parameter that 
controls the amount of shrinkage.
• The idea of penalizing by the sum-of-squares of the 

parameters is also used in neural networks, where it 
is known as weight decay.
• An equivalent way to write the ridge problem is:



Tuning Parameter
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where the tuning parameter λ is a positive value. 
• This has the effect of shrinking the estimated beta 

coefficients towards zero. It turns out that such a 
constraint should improve the fit, because shrinking 
the coefficients can significantly reduce their 
variance.

• Note that when λ = 0, the penalty term as no effect, 
and ridge regression will procedure the OLS 
estimates. Thus, selecting a good value for λ is 
critical (can use cross-validation for this).



The Lasso 
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• One significant problem of ridge regression is that the 
penalty term will never force any of the coefficients to be 
exactly zero. 

• Thus, the final model will include all p predictors, which 
creates a challenge in model interpretation

• A more modern machine learning alternative is the lasso.

• The lasso works in a similar way to ridge regression, 
except it uses a different penalty term that shrinks some of 
the coefficients exactly to zero.



The Lasso 
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• The lasso coefficients minimize the quantity:

• The key difference from ridge regression is that the lasso 
uses an ℓ! penalty instead of an ℓ", which has the effect of 
forcing some of the coefficients to be exactly equal to zero 
when the tuning parameter λ is sufficiently large.

• Thus, the lasso performs variable/feature selection.



The Lasso vs Ridge
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• The lasso and ridge regression coefficient estimates are given by the first point at which 
an ellipse contacts the constraint region.

OLS Solution

Lasso Ridge 
Regression



How to select the Tuning Parameter
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• Select a grid of potential values; use cross-validation to 
estimate the error rate on test data (for each value of λ) and 
select the value that gives the smallest error rate.
• Finally, the model is re-fit using all of the variable observations and 

the selected value of the tuning parameter λ.

• Bayesian Optimization 



Bayesian Statistics 
• Bayesian Statistics:

• Probabilistic modeling to express all forms of uncertainty and 
noise

• … then inverse probability rule (i.e. Bayes’ Theorem) allows us to 
infer unknown quantities, learn from data, and make predictions
• Bayes’ theorem: 

• Bayesian statistics that is not parametric (wait!) 
• Bayesian nonparametrics (i.e. not finite parameter, 

unbounded/ growing/infinite number of parameters) 
• BNP models do not generally satisfy Bayes’ theorem since the density cannot exist for all x 

(undominated models) (not the same as posterior tractability!) 
• Random discrete measures are often undominated. 
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Bayesian Nonparametric Model
• Why Bayesian nonparametrics?

• Bayesian : Simplicity (of the framework)
• Nonparametric :  Complexity (of the real world phenomena) 

• Definition: A BNP model is a Bayesian Model with an 
infinite-dimension parameter space and assumes that 
data distribution cannot be represented in terms of finite et 
of parameters. 
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Modeling Goal Example process

Distribution on functions 
Distribution on distributions

Clustering 
Hierarchical clustering

Distribution on measures
…

Gaussian processes
Dirichlet processes 

PY processes
CRP / Polya Urn 

Dirichlet diffusion tree 
Kingman’s coalescent 

Completely random measure



Bayesian Lasso
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• Reminder:

For the linear regression model  

Bayesian Statistics suggests to have priors: 
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Comparison 
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• The Bayesian Lasso estimates appear to be a compromise 
between the Lasso and ridge regression estimates; the 
paths are smooth, like ridge regression, but are more 
similar in shape to the Lasso paths, particularly when the 
L1 norm is relatively small. 

• Bayesian Lasso appears to pull the more weakly related 
parameters to 0 faster than ridge regression does, 
indicating a potential advantage of the Laplace prior over a 
Gaussian (or a Student-t) prior. 



Comparison 
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Lasso(a),Bayesian Lasso(b),and ridge regression(c)trace plots for estimates of the diabetes data regression 
parameters versus the relative L1 norm, with vertical lines for the Lasso and Bayesian Lasso indicating the 
estimates chosen by n-fold cross-validation and marginal maximum likelihood. The Bayesian Lasso estimates 
were posterior medians computed over a grid of λ values, using 10,000 consecutive iterations of the Gibbs 
sampler of Section 2 (after 1,000 burn-in iterations) for each λ. 

Trevor PARK and George CASELLA 



Search for Good Parameters 
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• Define an objective function.
• Most often, we care about generalization performance. Use cross validation 

to measure parameter quality! 

• How do people currently search? Black magic.
• Grid search
• Random search

Painful!
• Requires many training cycles.
• Possibly Noisy.



Can We Do Better? Bayesian Optimization
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• Build a probabilistic model for the objective. Include 
hierarchical structure about units, etc. 
• Compute the posterior predictive distribution.

Integrate out all the possible true functions.
We use Gaussian process regression. 
• Optimize a cheap proxy function instead.

The model is much cheaper than that true objective. 

The main insight! 
Make the proxy function exploit uncertainty to 

balance exploration against exploitation. 



Using Uncertainty in Optimization 
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• Find the minimum
• We only can compute the function pointwise but do not 

have the functional form or the gradient ( function 
behaves like a black box).
• After performing some evaluations, the GP gives us 

easy closed-form marginal mean and variances. 
• Exploration: Seek places with high variance.
• Exploitation: Seek places with low mean.
• The acquisition function balances these for our proxy 

optimization to determine the next evaluation. 
Bayesian Optimization uses all of the information from previous 
evaluations and performs some computation to determine the next 
point to try 



Intuition: Bayesian Optimization 
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The main insight! 
Make the proxy function exploit uncertainty to balance 

exploration against exploitation. 
• We want to find the peak of our true function (e.g., 

accuracy as a function of hyperparameters) 
• To find this peak, we will fit a Gaussian Process to 

our observed points and pick our next best point 
where we believe the maximum will be. 
• This next point is determined by an accusation 

function which trades between the exploration and 
exploitation. 

Lecture by Nando de Freitas and a Tutorial paper by Brochu et al 



Bayesian Optimization 
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Acquisition function 
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Guides the optimization by determining which point to observe next and is 
easier to optimize to find the next sample point. 

The posterior GP gives the predictive mean and variance functions.

• Probability of Improvement (PI): (Kushner 1964)

• Expected Improvement (EI): (Mockus 1978)

• GP Upper/Lower Confidence Bound: (Srinivas 2010)
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Choices of GP
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Ironic Problem! 
Bayesian optimization has its own hyperparameters! 
• Covariance function selection
• This turns out to be crucial to good performance.
• The default choice for regression is way too smooth.

Instead: use adaptive Matern 3/5 kernel. 
• Gaussian process hyperparameters
• Typical empirical Bayes approach can fail horribly.

Instead: use Markov chain Monte Carlo integration.



GP Hyperparameters: MCMC to Rescue
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• Marginalize over hyperparameters and compute integrated 
acquisition function.  
• Covariance hyperparameters are often optimized rather 

than marginalized, typically in the name of convenience 
and efficiency.
• Compute accusation function by marginalizing over 

hyperparameters:
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